Time to Decide? Dynamical Analysis Predicts Partial Tip/Stalk Patterning States Arise during Angiogenesis

نویسندگان

  • Lakshmi Venkatraman
  • Erzsébet Ravasz Regan
  • Katie Bentley
چکیده

Angiogenesis is a highly dynamic morphogenesis process; however, surprisingly little is known about the timing of the different molecular processes involved. Although the role of the VEGF-notch-DLL4 signaling pathway has been established as essential for tip/stalk cell competition during sprouting, the speed and dynamic properties of the underlying process at the individual cell level has not been fully elucidated. In this study, using mathematical modeling we investigate how specific, biologically meaningful, local conditions around and within an individual cell can influence their unique tip/stalk phenotype switching kinetics. To this end we constructed an ordinary differential equation model of VEGF-notch-DLL4 signaling in a system of two, coupled endothelial cells (EC). Our studies reveal that at any given point in an angiogenic vessel the time it takes a cell to decide to take on a tip or stalk phenotype may be drastically different, and this asynchrony of tip/stalk cell decisions along vessels itself acts to speed up later competitions. We unexpectedly uncover intermediate "partial" yet stable states lying between the tip and stalk cell fates, and identify that internal cellular factors, such as NAD-dependent deacetylase sirtuin-1 (Sirt1) and Lunatic fringe 1 (Lfng1), can specifically determine the length of time a cell spends in these newly identified partial tip/stalk states. Importantly, the model predicts that these partial EC states can arise during normal angiogenesis, in particular during cell rearrangement in sprouts, providing a novel two-stage mechanism for rapid adaptive behavior to the cells highly dynamic environment. Overall, this study demonstrates that different factors (both internal and external to EC) can be used to modulate the speed of tip/stalk decisions, opening up new opportunities and challenges for future biological experiments and therapeutic targeting to manipulate vascular network topology, and our basic understanding of developmental/pathological angiogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation.

Angiogenic sprouting requires functional specialisation of endothelial cells into leading tip cells and following stalk cells. Experimental data illustrate that induction of the tip cell phenotype is dependent on the protein VEGF-A; however, the process of tip cell selection is not fully understood. Here we introduce a hierarchical agent-based model simulating a suggested feedback loop that lin...

متن کامل

VEGFRs and Notch: a dynamic collaboration in vascular patterning.

ECs (endothelial cells) in the developing vasculature are heterogeneous in morphology, function and gene expression. Inter-endothelial signalling via Dll4 (Delta-like 4) and Notch has recently emerged as a key regulator of endothelial heterogeneity, controlling arterial cell specification and tip versus stalk cell selection. During sprouting angiogenesis, tip cell formation is the default respo...

متن کامل

In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients.

Sprouting angiogenesis requires a coordinated guidance from a variety of angiogenic factors. Here, we have developed a unique hydrogel incorporating microfluidic platform which mimics the physiological microenvironment in 3D under a precisely orchestrated gradient of soluble angiogenic factors, VEGF and ANG-1. The system enables the quantified investigation in chemotactic response of endothelia...

متن کامل

Computational Screening of Tip and Stalk Cell Behavior Proposes a Role for Apelin Signaling in Sprout Progression

Angiogenesis involves the formation of new blood vessels by sprouting or splitting of existing blood vessels. During sprouting, a highly motile type of endothelial cell, called the tip cell, migrates from the blood vessels followed by stalk cells, an endothelial cell type that forms the body of the sprout. To get more insight into how tip cells contribute to angiogenesis, we extended an existin...

متن کامل

Jostling for position in angiogenic sprouts: continuous rearrangement of cells explained by differential adhesion dynamics.

Endothelial sprouting during angiogenesis is a highly coordinated morphogenetic process that involves polarized tip cells leading stalk cells to form new capillaries. While tip and stalk cells previously were thought to be stable and have static phenotypes within the sprout, it is becoming increasingly clear that endothelial cells undergo dynamic rearrangements. A new study using computer simul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016